Nkx2-5 represses Gata1 gene expression and modulates the cellular fate of cardiac progenitors during embryogenesis.
نویسندگان
چکیده
BACKGROUND Recent studies suggest that the hematopoietic and cardiac lineages have close ontogenic origins, and that an early mesodermal cell population has the potential to differentiate into both lineages. Studies also suggest that specification of these lineages is inversely regulated. However, the transcriptional networks that govern the cell fate specification of these progenitors are incompletely defined. METHODS AND RESULTS Here, we show that Nkx2-5 regulates the hematopoietic/erythroid fate of the mesoderm precursors early during cardiac morphogenesis. Using transgenic technologies to isolate Nkx2-5 expressing cells, we observed an induction of the erythroid molecular program, including Gata1, in the Nkx2-5-null embryos. We further observed that overexpression of Nkx2-5 with an Nkx2-5-inducible embryonic stem cell system significantly repressed Gata1 gene expression and suppressed the hematopoietic/erythroid potential, but not the endothelial potential, of the embryonic stem cells. This suppression was cell-autonomous, and was partially rescued by overexpressing Gata1. In addition, we demonstrated that Nkx2-5 binds to the Gata1 gene enhancer and represses the transcriptional activity of the Gata1 gene. CONCLUSIONS Our results demonstrate that the hematopoietic/erythroid cell fate is suppressed via Nkx2-5 during mesodermal fate determination, and that the Gata1 gene is one of the targets that are suppressed by Nkx2-5.
منابع مشابه
Molecular Cardiology Nkx2-5 Represses Gata1 Gene Expression and Modulates the Cellular Fate of Cardiac Progenitors During Embryogenesis
متن کامل
NK4 Antagonizes Tbx1/10 to Promote Cardiac versus Pharyngeal Muscle Fate in the Ascidian Second Heart Field
The heart and head muscles share common developmental origins and genetic underpinnings in vertebrates, including humans. Parts of the heart and cranio-facial musculature derive from common mesodermal progenitors that express NKX2-5, ISL1, and TBX1. This ontogenetic kinship is dramatically reflected in the DiGeorge/Cardio-Velo-Facial syndrome (DGS/CVFS), where mutations of TBX1 cause malformati...
متن کاملExpressional Analysis of Stem Cell Marker SALL4 in Mesencephalon during Chicken Embryogenesis
Background SALL gene family represent a group of evolutionary conserved zinc finger transcription factors which are involved in normal development. It includes four members (SALL1 to SALL4). SALL4 has significant roles in the maintenance of pluripotency and self-renewal, efficient proliferation /stabilization and cell fate decision of embryonic stem cells (ESCs). Our aim in this study was to a...
متن کاملO-3: Drug Repositioning by Merging Gene Expression Data Analysis and Cheminformatics Target Prediction Approaches
The transcriptional responses of drug treatments combined with a protein target prediction algorithm was utilised to associate compounds to biological genomic space. This enabled us to predict efficacy of compounds in cMap and LINCS against 181 databases of diseases extracted from GEO. 18/30 of top drugs predicted for leukemia (e.g. Leflunomide and Etoposide) and breast cancer (e.g. Tamoxifen a...
متن کاملControl of early cardiac-specific transcription of Nkx2-5 by a GATA-dependent enhancer.
The homeobox gene Nkx2-5 is the earliest known marker of the cardiac lineage in vertebrate embryos. Nkx2-5 expression is first detected in mesodermal cells specified to form heart at embryonic day 7.5 in the mouse and expression is maintained throughout the developing and adult heart. In addition to the heart, Nkx2-5 is transiently expressed in the developing pharynx, thyroid and stomach. To in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation
دوره 123 15 شماره
صفحات -
تاریخ انتشار 2011